Issue << content << Youngs Modulus Determination for Case-Hardened Materials


DOI: 10.12737/23511

2016. Vol.19. No. 4, pp. 57–60

Youngs Modulus Determination for Case-Hardened Materials

E. N. Emelyanov, A. V. Konakov, Yu. V. Larionov

The issue of strength analysis as well as foreknowledge of component and structure life is of interest at this time for new composite materials. New composite materials and alloys elastic response is often unknown, and standard methods for their determining can not be applied to, e.g. materials featuring surface gradient properties.
Elasticity modulus method of examination is based on stepwise removal of part of the material from the rod sample surface or application of a coating onto the sample surface. Each step is accompanied by measurement of the sample lateral dimensions, and density. To determine Youngs modulus, resonance frequencies of the sample subjected to forced longitudinal vibrations are measured using an ultrasonic device. The device principle of operation is based on excitation and tracking of the sample forced mechanical oscillations close to its own frequencies, measurement of resonance peak parameters followed by calculations of the Youngs modulus. To induce and track the forced oscillations in the sample, use is made of piezoelectric transducers attached to damped acoustic transmission rods, while the sample is fixed between pointed rod ends. This arrangement makes it possible to examine also Youngs modulus temperature dependences.
Youngs modulus measurement results for case-hardened hard alloy are provided. It is shown that Youngs modulus of surface layers is lower than that of the base material, which is explained by formation of new compounds in the surface layers owing to chemical and diffusion reactions between an alloying element and alloy components. The doped layer extends to 0.45 mm. The results obtained can be used for strength calculations of case-hardened materials, estimation of cohesive and adhesive strength of individual layers of coatings, structure and other physical and mechanical properties of materials.
Keywords: properties gradient, resonance frequency, forced oscillations.
References
1. Barvinok V. A., Bogdanovich V. I., Vasileva V. G. i dr. Sposob opredelenija modulja uprugosti materialov / Avt. svid. SSSR № 1078315. 1984.
2. Shirjaev A. M., Pashkin V. A. i dr. K metodike izmerenija modulej uprugosti tonkih plenok i pokrytij. — Zavodskaja laboratorija. 1991. № 7. S. 45–47.
3. Kompozicionnye materialy / Pod red. L. Brautmana, R. Kroka. T. 4. Kompozicion-nye materialy s metallicheskoj matricej / Red. K. Krejder; per. s angl. pod red K. I. Portnogo. — Moskva: Mashinostroenie, 1978. — 502 s.
4. Metallovedenie i termicheskaja obrabotka stali / Sprav. izd. v 3-h t.// Pod red. M. L. Bernshtejna, A. G. Rahshtada. T.1. Metody ispytanij i issledovanij. — M.; Metallur-gija, 1991. — 462 s.
5. Samsonov G. V., Verhoturov A. D., Bovkun G. A., Sychjov V. S. Jelektroiskrovoe legiro-vanie metallicheskih poverhnostej. – Kiev: Naukova dumka, 1976. — 219 s.
6. Vlasov V. M. Rabotosposobnost uprochnjonnyh trushhihsja poverhnostej. — M.: Mashi-nostroenie, 1987. — 304 s.
7. Vereshhaka A. S. Rabotosposobnost rezhushhego instrumenta s iznosostojkimi pokry-tijami. — M.: Mashinostroenie, 1993. — 336 s.
8. Baranov V. M., Kudrjavcev E. M., Martynenko S. P. Akusticheskaja metodika opredele-nija harakteristik uprugosti i vnutrennego trenija materialov v shirokom intervale temperatur. — Problemy prochnosti. 1989. № 6. S. 116–119.
9. Lanovenko E. V. Issledovanie akusticheskih svojstv metallov i splavov v oblasti fazovyh perehodov / Avtoref. diss. k. t. n.: Komsomolsk-na-Amure: KnAGTU, 2000. — 23 s.
10. Fizicheskaja akustika / Pod red. U. Mjezon – M.: Mir, 1968.
11. Chigrin Ju. L. Issledovanie, razrabotka i poluchenie gradientnyh instrumental-nyh materialov na osnove tugoplavkih metallov i ih soedinenij / Dis. k. t. n. — Blago-veshhensk, 1999. — 159 s.
12. Konakov A. V., Emeljanov E. N. Sposob opredelenija fiziko-mehanicheskih svojstv mnogoslojnyh i poverhnostno-uprochnennyh materialov. Patent RF № 2219518. Zajavl. 12.08.2002; opubl. 20.12.2003.
13. Konakov A. V., Emeljanov E. N. Sposob opredelenija fiziko-mehanicheskih svojstv mnogoslojnyh i poverhnostno-uprochnennyh materialov. Patent RF № 2227281. Zajavl. 12.08.2002; opubl. 20.04.2004.
14. Konakov A.V., Emeljanov E.N.Sposob opredelenija fiziko-mehanicheskih svojstv materiala s pokrytiem. Patent RF № 2219519. Zajavl. 12.08.2002; opubl. 20.12.2003.
15. Konakov A. V., Emeljanov E. N. Sposob opredelenija fiziko-mehanicheskih svojstv materiala s pokrytiem. Patent RF № 2220412. Zajavl. 12.08.2002; opubl. 27.12.2003.
16. Fadeev V. S., Verhoturov A. D., Emeljanov E. N. Razrabotka i issledovanie mate-riala instrumentalnogo naznachenija s poverhnostnym gradientom uprugih svojstv. — Perspektivnye materialy. 2003. № 1. S. 73–80.

 
 
published
NDT in Mining Industry

MAIN FEATURE:
NDT in Mining Industry

CONTACTS

5 Udelny Pr.
St. Petersburg
007 812 670 7609
007 812 670 7611


NDT World, Russian Quarterty Journal
©2000-2016 All rights reserved