Issue << content << Magnetic Barkhausen Noise for Reliable Detection of the Heat Affected Zone in Welded Ship Steel Plate


DOI:

2014. . No. 4(66) - Dec 2014, pp. 70-75

Magnetic Barkhausen Noise for Reliable Detection of the Heat Affected Zone in Welded Ship Steel Plate

M. M. Blaow, B. A. Shaw

From AIP Conference Proceedings, 1581, 1320-1327 (2014), DOI: http://dx.doi.org/10.1063/1.4864974. Reprinted with permission of AIP Publishing LLC.

The applicability of the Barkhausen noise technique to non-destructively determine the heat affected zone (HAZ) in welded steel plates was investigated. Magnetic Barkhausen noise (MBN) measurements were conducted on welded hot-rolled low carbon ship steel plates to determine the MBN behaviour following the exposure to elevated heat in a localized region by welding. The exciting field was applied parallel to the weld bead. The results showed a variation in MBN level along a line that crosses the weld bead. The MBN intensity was higher in the near weld material compared with a lower intensity when the measurement setup was moved away from the weld bead in both sides of the weld. The increased MBN level was attributed to the induced residual tensile stresses as a result of the shrinkage of the hot zone. The variation of MBN along the measurement line was eliminated after the welded plate was shot peened. The decrease in MBN intensity after shot peening was attributed to the induced compressive stresses. The results were explained in terms of different mechanisms of interaction of domain walls with residual tensile and compressive stresses.
 
Keywords: welding, magnetic Barkhausen noise, root mean square, residual stresses, heat affected zone, shot peening
References
  1. Gatelier-Rothea C., Chicois J., Fougres R., Fleichman P. Acta Mater. 1998, v. 46, pp. 4873–4882.
  2. Rosipal M., Neslusan M., Ochodek V., Sipek M. Mat. Eng. 2010, v. 17, no. 2, pp. 11–14.
  3. Czec D. J. J. Phys. 2000. v. 50, pp. 893–988.
  4. Ilker Yelbay H., Cam I., Hakan Gur C. NDT&E Int. 2010, v. 43, no. 1, pp. 29–33.
  5. Xin Q., Shu D., Hui L. et. al. J. Nondestructive Eva. 2012. v. 32, pp. 80–89.
  6. Shaw B., Evans J., Wojtas A. S., Suominen L., IOS Press in the Series in Applied Electromagnetics and Mechanics, 82–91 (1997).
  7. B.A. Shaw, J.T. Evans, A.S. Wojtas, L. Suominen, Grinding process control using the magnetic Barkhausen noise method, in: Third International Workshop on Electromagnetic Non-destructive Evaluation, Reggio Calabria, Italy, Sept.14-16, 1997, pp. 82-91.
  8. M. Blaow, J. Evans, B. Shaw, J. Mat.  Sci (42), 4364-4371(2007).
  9. J. Anglada-Rivera, L. Padovese and J. Capo-Santchez, J Magn Magn Mater 231, 299-306 (2001).
  10. J. Chen, D. Zhang, X. Zhou andW. Wang, Sens. Actu A 168, 51-57 (2011).
  11. X. Kleber and A. Vincent, NDT & E Int (37), 439 – 445 (2004).
  12. J. Capo-Sancher and J. Perez-Benitez, NDT & E Int (41), 656-659 (2008).
  13. J. Blachio, NDT & E Int (41), 273-279 (2008).
  14. J. Perez-Benitez and J. Capo-Sancher, Comp. Mat. Sci 44, 850-857 (2009).
  15. W. Qixin, X. Zheng and J. Chen, J. Test eval 36 (6), 528-533 (2008).
  16. C. Stefanita, D. Clapham and D. Atherton, J. Mat. Sci 35, 2675-2681 (2000).
  17. P. Zerovnik, J. Grum, and G. Zerovnik, IEEE Trans. Magn 46 (3), 899- 904 (2010).
  18. T. Hyde, J. Evans and B. Shaw, Mat. Eval 58(8) 985–990 (2000).
  19. D. M. Stewart, K.J. Stevens and A. B. Kaiser, Current App. Phy (4), 308–311 (2004).
  20. S. Santa-aho, M. Vippola, A. Sorsab. J. Latokartanoc, M. Lindgren, K. Leivisk and L. Toivo, J. Mat. Proc. Tech 212, 408 – 416 (2012).
  21. K. Kesaven, K. Ravisankar, S. Parivallal and P. Sreeshylam, Exp. Tech 17-21 (2005).
  22. V. Moorthy, S. Vaidyanathan, K. Laha, T. Jayakumar, K. Bhanu Sankara Rao and B. Raj, Mat. Sci. Eng A 231, 98-104 (1997).
  23. V. Moorthy, B. Shaw and S. Day, Acta Mat 1927 -1936 (2003).
  24. M. Blaow, JT. Evans and B. Shaw, J. Magn. Magn. Mat 303, 153–159 (2006).
  25. M. Blaow, JT. Evans and B. Shaw, Acta Mat 53, 279–287 (2005).
  26. M. Blaow, JT. Evans and B. Shaw, Mater. Sci. Eng A 386, 74–80 (2004).
  27. T. Krause, L. Clapham, A. Pattantyus and D. Atherton, J Appl Phys 79, 4242–52 (1996).
  28. K. Sorsa, K. Leivisk, S. Santa-aho, and T. Lepisto, NDT&E Int 46, 100-106 (2012).
  29. C. Alessandro and A. Montorsi, I. Theory 68, 2901-2907 (1990).
  30. D. Jiles and L. Sipahi, J Appl. Phys 73, 5831-5832 (1993).
  31. E. Lo and D. Jiles, J. Appl. Phys. Art. No. 08B705 (2006).
  32. M. Sablik, J Appl Phys 74, 5898-5900 (1993).
  33. M. Sablik and B. Augustyniak, J Appl Phys 79, 963-972 (1996).
  34. M. Sablik and D. Jiles, IEEE Trans. Magn. 29, 2113-2116 (1993).
 
published
NDT 4.0

MAIN FEATURE:
NDT 4.0

CONTACTS

5 Udelny Pr.
St. Petersburg
007 812 670 7609
007 812 670 7611


NDT World, Russian Quarterty Journal
©2000-2016 All rights reserved